Publications

generated by bibbase.org
  2020 (6)
Multi-Partitions Subspace Clustering. Vandewalle, V. Mathematics, 8(4): 597. 2020.
link   bibtex  
Gaussian-Based Visualization of Gaussian and Non-Gaussian-Based Clustering. Biernacki, C.; Marbac, M.; and Vandewalle, V. Journal of Classification. 2020.
Gaussian-Based Visualization of Gaussian and Non-Gaussian-Based Clustering [link]Paper   doi   link   bibtex   abstract  
From industry-wide parameters to aircraft-centric on-flight inference: Improving aeronautics performance prediction with machine learning. Dewez, F.; Guedj, B.; and Vandewalle, V. Data-Centric Engineering, 1: e11. 2020.
doi   link   bibtex   25 downloads  
Estimating the number of usability problems affecting medical devices: modelling the discovery matrix. Vandewalle, V.; Caron, A.; Delettrez, C.; Périchon, R.; Pelayo, S.; Duhamel, A.; and Dervaux, B. BMC Medical Research Methodology, 20(234). 2020.
link   bibtex  
Clustering spatial functional data. Vandewalle, V.; Preda, C.; and Dabo, S. In Mateu, J.; and Giraldo, R., editor(s), Geostatistical Functional Data Analysis : Theory and Methods. John Wiley and Sons, Chichester, UK, 2020. ISBN: 978-1-119-38784-8
link   bibtex  
cfda: an R Package for Categorical Functional Data Analysis. Preda, C.; Grimonprez, Q.; and Vandewalle, V. October 2020. working paper or preprint
cfda: an R Package for Categorical Functional Data Analysis [link]Paper   link   bibtex  
  2019 (3)
Linking different kinds of Omics data through a model-based clustering approach. Vandewalle, V.; Ternynck, C.; and Marot, G. In IFCS 2019, Thessaloniki, Greece, 2019.
link   bibtex  
Circulating proteomic signature of early death in heart failure patients with reduced ejection fraction. Cuvelliez, M.; Vandewalle, V.; Brunin, M.; Beseme, O.; Hulot, A.; de Groote, P.; Amouyel, P.; Bauters, C.; Marot, G.; and Pinet, F. Scientific reports, 9(1): 1–12. 2019.
link   bibtex  
A tractable multi-partitions clustering. Marbac, M.; and Vandewalle, V. Computational Statistics & Data Analysis, 132: 167–179. 2019.
link   bibtex  
  2018 (6)
Supervised multivariate discretization and levels merging for logistic regression. Ehrhardt, A.; Vandewalle, V.; Biernacki, C.; and Heinrich, P. In 23rd International Conference on Computational Statistics, Iasi, Romania, August 2018.
Supervised multivariate discretization and levels merging for logistic regression [link]Paper   link   bibtex  
Gaussian-based visualization of Gaussian and non-Gaussian model-based clustering. Biernacki, C.; Vandewalle, V.; and Marbac, M. August 2018. 23rd International Conference on Computational Statistics, Iasi, Romania
link   bibtex  
Clustering spatial functional data. Vandewalle, V.; Preda, C.; and Dabo, S. December 2018. ERCIM 2018, Pise, Italy
link   bibtex  
ClinMine: Optimizing the management of patients in hospital. Dhaenens, C.; Jacques, J.; Vandewalle, V.; Vandromme, M.; Chazard, E.; Preda, C.; Amarioarei, A.; Chaiwuttisak, P.; Cozma, C.; Ficheur, G.; and others IRBM, 39(2): 83–92. 2018.
link   bibtex  
A tractable multi-partitions clustering. Vandewalle, V.; and Marbac, M. August 2018. COMPSTAT 2018 - 23rd International Conference on Computational Statistics, Iasi, Romania. (invité)
link   bibtex  
A targeted multi-partitions clustering. Marbac, M.; Biernacki, C.; Sedki, M.; and Vandewalle, V. In The 11th International Conference of the ERCIM WG on Computational and Methodological Statistics (CMStatistics 2018), Pise, Italy, December 2018.
A targeted multi-partitions clustering [link]Paper   link   bibtex  
  2017 (8)
Survival analysis with complex covariates: a model-based clustering preprocessing step. Vandewalle, V.; and Biernacki, C. 2017. IEEE PHM, Dallas June 19th (invité)
link   bibtex  
Simultaneous dimension reduction and multi-objective clustering. Vandewalle, V. 2017. IFCS Meeting, Tokyo, August 8th (invité)
link   bibtex  
Model-based variable clustering. Vandewalle, V.; Mottet, T.; and Marbac, M. December 2017. CMStatistics/ERCIM 2017 - 10th International Conference of the ERCIM WG on Computational and Methodological Statistics, London, United Kingdom. (invité)
link   bibtex  
Model-based multivariate discretization for logistic regression. Ehrhardt, A.; Biernacki, C.; Vandewalle, V.; and Heinrich, P. Data Science Summer School, August 2017. Poster
Model-based multivariate discretization for logistic regression [link]Paper   link   bibtex  
Model-based clustering of Gaussian copulas for mixed data. Marbac, M.; Biernacki, C.; and Vandewalle, V. Communications in Statistics - Theory and Methods, 46(23): 11635–11656. 2017.
link   bibtex  
Mixture Models with Missing data Classication of Satellite Image Time Series. Iovleff, S.; Fauvel, M.; Girard, S.; Preda, C.; and Vandewalle, V. In Journées Science des Données MaDICS 2017, pages 1–60, Marseille, France, June 2017.
Mixture Models with Missing data Classication of Satellite Image Time Series [link]Paper   link   bibtex  
Dealing with missing data through mixture models. Vandewalle, V.; and Biernacki, C. 2017. 154th ICB Seminar on Statistics and clinical practice'' Warsaw May 11 (invité)
link   bibtex  
Clustering categorical functional data: Application to medical discharge letters. Vandewalle, V.; and Preda, C. 2017. 20th conference of the society of probability and statistics of Roumania, Brasov (Roumania), April 28 (invité)
link   bibtex  
  2016 (4)
Simultaneous dimension reduction and multi-objective clustering using probabilistic factorial discriminant analysis. Vandewalle, V. December 2016. CMStatistics 2016 Sevilla, Spain. (invité)
link   bibtex  
Pitfalls in Mixtures from the Clustering Angle. Biernacki, C.; Castellan, G.; Chretien, S.; Guedj, B.; and Vandewalle, V. In Working Group on Model-Based Clustering Summer Session, Paris, France, July 2016.
Pitfalls in Mixtures from the Clustering Angle [link]Paper   link   bibtex  
Latent class model with conditional dependency per modes to cluster categorical data. Marbac, M.; Biernacki, C.; and Vandewalle, V. Advances in Data Analysis and Classification, 10(2): 183–207. 2016.
link   bibtex  
Clustering categorical functional data Application to medical discharge letters Medical discharge letters. Vandewalle, V.; and Preda, C. July 2016. Working Group on Model-Based Clustering Summer Session: Paris, July 17-23, 2016 Paris, France
link   bibtex  
  2015 (5)
Model-based clustering of categorical data by relaxing conditional independence. Marbac, M.; Biernacki, C.; and Vandewalle, V. June 2015. Classification Society Meeting, Hamilton, Ontario, Canada (invité)
link   bibtex  
Model-based clustering for conditionally correlated categorical data. Marbac, M.; Biernacki, C.; and Vandewalle, V. Journal of Classification, 32(2): 145–175. 2015.
link   bibtex  
Clustering categorical functional data Application to medical discharge letters. Vandewalle, V.; Cozma, C.; and Preda, C. 2015. 8th International Conference of the ERCIM WG on Computational and Methodological Statistics, Dec 2015, Londres, United Kingdom
link   bibtex  
Classification de données mixtes par un modèle de mélange de copules gaussiennes. Marbac, M.; Biernacki, C.; and Vandewalle, V. 2015. 46èmes Journées de la SFDS, Rennes
link   bibtex  
An efficient SEM algorithm for Gaussian Mixtures with missing data. Vandewalle, V.; and Biernacki, C In 8th International Conference of the ERCIM WG on Computational and Methodological Statistics, Londres, United Kingdom, December 2015.
An efficient SEM algorithm for Gaussian Mixtures with missing data [link]Paper   link   bibtex  
  2014 (4)
Visualisation des Modèles de Mélange. Iovleff, S.; Biernacki, C.; and Vandewalle., V. 2014. Big Data Mining and Visualization, Journées communes aux Groupes de Travail EGC et AFIHM, Lille
link   bibtex  
Table ronde STID-groupe Enseignement de la statistique de la SFdS : comment s'appuyer sur nos réseaux d'anciens étudiants pour mieux promouvoir nos formations en statistique. Letué, F.; Gabriel, E.; and Vandewalle, V. 2014. 46èmes Journées de la SFDS, Rennes
link   bibtex  
Model-based clustering of Gaussian copulas for mixed data. Marbac, M.; Biernacki, C.; and Vandewalle, V. 2014. Working meeting Handling categorical and continuous data" of GdR MASCOT-NUM. IHP, Paris
link   bibtex  
Mixture of Gaussians for distance estimation with missing data. Eirola, E.; Lendasse, A.; Vandewalle, V.; and Biernacki, C. Neurocomputing, 131: 32–42. 2014.
link   bibtex  
  2013 (6)
Quel est le bagage statistique de nos futurs étudiants ?. Vandewalle, V. 2013. 45èmes Journées de la SFDS, Toulouse
link   bibtex  
Modèle de mélange de copules Gaussiennes pour la classification de données hétérogènes. Marbac, M.; Biernacki, C.; and Vandewalle, V. 2013. 5èmes Rencontres des Jeunes Statisticien-ne-s, Aussois
link   bibtex  
Modèle de classification de données qualitatives par modes de dépendance conditionellement corrélés. Marbac, M.; Biernacki, C.; and Vandewalle, V. 2013. 45èmes Journées de la SFDS, Toulouse
link   bibtex  
Model-based clustering for conditionally correlated categorical data. Marbac, M.; Biernacki, C.; and Vandewalle, V. Technical Report RR-8232, INRIA, 2013.
link   bibtex  
Mise en garde sur l'utilisation des mélanges gaussiens avec données manquantes. Vandewalle, V.; and Biernacki, C. 2013. 45èmes Journées de la SFDS, Toulouse
link   bibtex  
A predictive deviance criterion for selecting a generative model in semi-supervised classification. Vandewalle, V.; Biernacki, C.; Celeux, G.; and Govaert, G. Computational Statistics & Data Analysis, 64: 220–236. 2013.
link   bibtex  
  2012 (2)
Modèle de mélange pour classifier des données qualitatives conditionnellement corrélées. Marbac, M.; Biernacki, C.; and Vandewalle, V. 2012. 44èmes Journées de la SFDS, Bruxelles
link   bibtex  
Mixture of Gaussians for Distances Estimations with Missing Data. Eirola, E.; Lendasse, A.; Vandewalle, V.; and Biernacki, C. 2012. Workshop New Challenges in Neural Computation
link   bibtex  
  2011 (2)
Label switching in mixtures. Biernacki, C.; and Vandewalle, V. In AIP Conference Proceedings, volume 1389, pages 398–401, 2011. American Institute of Physics
link   bibtex  
Label swicthing dans les mélanges. Biernacki, C.; and Vandewalle, V. 2011. 43èmes Journées de la SFDS, Tunis
link   bibtex  
  2010 (1)
How to Take into Account the Discrete Parameters in the BIC Criterion?. Vandewalle, V. COMPSTAT'2010 Book of Abstracts,21. 2010.
link   bibtex  
  2009 (3)
Sélection prédictive d'un modèle génératif par le critère AICp. Vandewalle, V. 2009. 41èmes Journées de Statistique, Bordeaux, France
link   bibtex  
Les modèles de mélange, un outil utile pour la classification semi-supervisée. Vandewalle, V. Monde des Util. Anal. Données, 40: 121–145. 2009.
link   bibtex  
Estimation et sélection en classification semi-supervisée. Vandewalle, V. Ph.D. Thesis, Université des Sciences et Technologie de Lille - Lille I, December 2009.
Estimation et sélection en classification semi-supervisée [link]Paper   link   bibtex  
  2008 (1)
Are unlabeled data useful in semi-supervised model-based classification? Combining hypothesis testing and model choice. Vandewalle, V.; Biernacki, C.; Celeux, G.; and Govaert, G. In proceedings of SFC-CLADAG meeting, pages 433-436, Caserta, Italy, June 2008.
link   bibtex  
  2007 (1)
Statistical tests to compare motif count exceptionalities. Robin, S.; Schbath, S.; and Vandewalle, V. BMC bioinformatics, 8(1): 84. 2007.
link   bibtex